滾齒加工切削力分析及切削參數優(yōu)化
[Abstract]:With the rapid development of manufacturing industry, people's living standard is improving constantly, and people's diversity of products and individualized demand stimulate manufacturing industry to innovate technology and create new products. As one of the basic transmission parts in the manufacturing industry, the demand for gear is increasing day by day, and the precision and performance requirements are also improved. Gear hobbing cutting is one of the main ways of gear machining, and the production efficiency is higher on the basis of satisfying the demand of products. Because the hobbing process is a complex multi-blade intermittent cutting process, the complexity of the process makes it necessary to find a more effective method to analyze the cutting mechanism in order to understand the cutting force of the hobbing cutting parameters. The influence of cutting temperature and tool wear has laid a foundation for the development of hobbing technology and made the traditional hobbing cutting more energy efficient and efficient. Based on the geometric motion relation between hob and workpiece in the process of hobbing, the geometric simulation model of hobbing machining is constructed on the platform of SolidWorks software, and the process of hobbing cutting is simulated in order to establish the three-dimensional model of finite element simulation. Calculation and analysis of the cutting force in the hobbing process lay the foundation. Genetic algorithm is used to optimize the hobbing cutting parameters to reduce the production cost, improve the processing efficiency, reduce the waste of resources caused by trial cutting, and maximize the benefit of the enterprise. The main work of this paper is as follows: firstly, the shape and size of chip obtained from hob teeth are analyzed by using the mathematical model of hobbing motion relationship. Based on the kinematic relationship between hob and workpiece in machining process, the mathematical models of 2-D and 3D hobbing states are established, and the coordinate points on the motion trajectory of hob teeth in 2D and 3D states are solved by using MATLAB. The cutting area of each tooth of hob teeth is analyzed. Taking KYTool as the SolidWorks plug-in, the SolidWorks is redeveloped with C language, which can be used to simulate the geometric process by using the spatial coordinate points of the cutter teeth according to the instruction, to study the cutting volume of each tooth of the hob teeth, and to analyze the cutting state of the cutting edge of the cutter teeth. At the same time, the coordinates of the points on the surface of the 3D chip model are extracted by using the SolidWorks secondary development method, and the validity of the extracted results is verified. Secondly, the workpiece model and chip model obtained by SolidWorks geometric simulation are used to calculate the cutting force of hobbing gear by analytic method and finite element method, respectively. In the former, the spatial coordinates of the points on the surface of the chip 3D model are extracted, and the cutting force is calculated by the micro-element method using the chip shape. The latter introduces the 3D model of workpiece into ABAQUS for hobbing simulation, calculates the cutting force of hobbing, and compares the results of the two to verify the correctness of the calculation. The influence of hobbing parameters on cutting force is analyzed by finite element simulation, which provides a theoretical basis for the selection of cutting parameters. Finally, the cutting parameters and cutting power in the hobbing process are studied. The experiment of hobbing cutting is designed to measure the cutting power of the hobbing teeth. The experimental average cutting power is compared with the analytical average cutting power to verify the correctness of the calculation results. The multi-objective optimization of hobbing parameters is carried out by genetic algorithm (GA), which makes the hobbing achieve the goal of minimum cost and shortest processing time. This study provides technical support for further mastering the mechanism of hobbing, and points out a new research method for the new hobbing machine-high-speed dry hobbing, which can provide accurate 3D model for the finite element simulation of hobbing. In order to achieve "rolling instead of grinding."
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG612
【相似文獻】
相關期刊論文 前10條
1 周華,倪谷來;滾齒機掛輪計算機選取法的改進[J];上海水產大學學報;2000年04期
2 劉其洪;基于開放的滾齒機掛輪選配系統(tǒng)的設計與實現[J];機械;2002年04期
3 王細洋;滾齒機掛輪自動選配系統(tǒng)[J];機床與液壓;2002年06期
4 趙文波,惠軍濤,鄧小玲;滾齒機差動掛輪選擇程序[J];礦山機械;2003年06期
5 陳燕 ,徐東風 ,張宇宙;計算機輔助選擇滾齒機掛輪[J];現代機械;2003年04期
6 ;我國最大的滾齒機制造成功[J];中國有色冶金;2005年02期
7 魏贛龍,付津平;累加計算法配滾齒掛輪[J];機械工人.冷加工;2005年03期
8 馬國亮,曹秋霞;滾齒機差動掛輪計算方法[J];煤礦機電;2005年03期
9 左倩;;滾齒機爆刀原因初探[J];工具技術;2009年12期
10 鄭春云;;巧妙解決5330滾齒機的搬遷定位難題[J];黑龍江冶金;2010年04期
相關會議論文 前3條
1 劉忠常;是復慶;;瑞士米克隆滾齒機的修理(MIKRON 102.05 EP小模數高精度萬能滾齒機)[A];設備維修與改造技術論文集[C];2000年
2 張崴漢;姜春雨;姬國棟;;滾齒機分度傳動鏈的誤差分析與計算[A];十三省區(qū)市機械工程學會第五屆科技論壇論文集[C];2009年
3 陳就;劉豐林;徐曉剛;;三軸數控聯動滾齒機YK3125總體設計[A];2010年重慶市機械工程學會學術年會論文集[C];2010年
相關博士學位論文 前6條
1 陳永鵬;高速干切滾齒多刃斷續(xù)切削空間成形模型及其基礎應用研究[D];重慶大學;2015年
2 陶曉杰;滾齒誤差及補償技術研究[D];合肥工業(yè)大學;2006年
3 劉潤愛;零傳動滾齒機關鍵技術研究與應用[D];重慶大學;2006年
4 高志強;ZFWZ12型滾齒機數控改造的研究[D];沈陽農業(yè)大學;2008年
5 陳國榮;面向服務的滾齒機故障診斷模式及關鍵支撐技術研究[D];重慶大學;2011年
6 黃強;零傳動滾齒機精度控制及顫振抑制技術研究[D];重慶大學;2008年
相關碩士學位論文 前10條
1 馬江波;基于Hadoop的滾齒機故障信息分析平臺與分析技術研究[D];重慶大學;2016年
2 呂盈;滾齒加工切削力分析及切削參數優(yōu)化[D];山東大學;2017年
3 謝小卿;滾齒機調整參數計算系統(tǒng)開發(fā)[D];重慶大學;2008年
4 胡林橋;網絡智能滾齒機故障診斷及維護系統(tǒng)設計與應用研究[D];重慶大學;2012年
5 賈煥飛;網絡智能滾齒機終端系統(tǒng)支持平臺的研究與應用[D];重慶大學;2012年
6 謝瑞木;干法滾齒切削理論及其工藝參數化優(yōu)化方法研究[D];浙江大學;2013年
7 劉小旭;滾齒振動動力學仿真分析及顫振抑制方法研究[D];重慶大學;2015年
8 賈斐;面向服務型制造的滾齒機備件資源配置研究[D];重慶大學;2014年
9 劉明輝;滾齒機精切硬齒面齒輪的動態(tài)測試與有限元模態(tài)分析[D];遼寧工程技術大學;2002年
10 李先廣;面向綠色制造的高速干式切削滾齒機設計與評價技術研究[D];重慶大學;2003年
,本文編號:2408283
本文鏈接:http://m.lk138.cn/kejilunwen/jiagonggongyi/2408283.html